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ABSTRACT 

A hydrodynamic model, based on shock diffraction theory and 

the quasi-s imilar i ty  solutions of blast wave theory, i s  developed t o  

descr ibe the shock profile his tory in a meta l  ta rge t  on which a hyper- 

velocity meta l  projecti le impacts.  A finite difference integration of 

the resultant method of character is t ic  solution i s  used to obtain 

numerical  resul ts .  A numerical  example of aluminum impacting on 

aluminum at a velocity of 20 km/sec  i s  presented. The comparison 

with the d i rec t  numerical  resul ts  shows a good agreement for  the 

c a s e  selected. 
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INTRODUCTION 

In order  to protect a space vehicle against meteoroid hazards, 

it is  necessary to understand the meteoroid impact phenomena and the 

penetration mechanism. The meteoric particles,  in spite of generally 

being small  in size, possess high kinetic energies because of their 

hypervelocity nature (ranging f rom 11 km/sec  to 72 kmlsec) .  Generally 

speaking, the t e rm "hypervelocity impact" is defined as  the collision of 

two solid bodies with a relative velocity higher than the elastic wave 

propagation speed in the mate r ial  under consideration. 

The impact mechanisms a r e  governed by an extremely complex 

system of nonlinear, partial  differential equations with very complicated 

boundary conditions. To solve this problem analytically i s  a rather  

formidable task. Since 1958, several  computer programs (Refs. 1 

through 6) have been developed which permit complete solutions through 

direct numerical analysis. A survey of this subject reveals that not 

only a tremendous amount of computing time i s  required for operating 

these computer programs,  but large e r r o r s  may develop because of 

the numerical fluctuations inherent in such solutions. In spite of these 

deficiencies , the numerical method is  sti l l  considered the principal 

approach to obtaining a complete solution of hypervelocity impact. 

In addition to the numerical solutions obtained by the huge com- 

puter programs,  analytic solutions of hypervelocity impact have been 

obtained by many authors. An excellent review of such solutions has 

been given by Rae (Ref. 7).  So-called "analytic treatments" of hyper- 

velocity impact usually refer  to those approximate solutions which, 

even though yielding less  exact results than the numerical methods, a r e  

easily obtained and, most importantly, sti l l  display the essential features 

of the problem. Since solutions cannot be obtained in a rigorous manner 

by the available analytic techniques without considerable simplifications, 

clearly each approximate method is  valid only for the conditions for 

which the simplifying assumptions apply. 



Blast wave clleory (Refs. 7 and 8), for instance, yields shock 

profiles in good agreement  with direct numerical solutions at  a late stage 

of impact,  e.  g . ,  an appreciable period of time af ter  impact. The blast  

wave solutions, however, a r e  not applicable to the thin target plate since 

the thickness of the target  is  comparable to the projectile dimensions 

which invalidates point source assumption. The blast wave solution, 

however, does reveal  the important fact that there exists a close anal-  

ogy between the propagation of shocks for a thick target  resulting f rom 

explosions and those resulting f rom hypervelocity impact. 

In the present  study, a cylindrical projectile impacting on a 

target  of infinite depth i s  considered. At the instant of impact, a plane 

shock is  generated on the target  surface with the shock a r e a  equal to 

the c i rcu lar  c r o s s  section of the incident p r imary  cylinder. Considera- 

tion i s  then directed to describing the shock profiles a s  t ime elapses.  

The initial conditions a r e  considered to be equivalent to a surface ex- 

plosion of finite a r e a  on the target  surface,  an equivalence which has  

also been used by Zeldovich (Ref. 9)  , among other Soviet scientists,  a s  

the idealized model which descr ibes  the initial stage of impact. He did 

not, however, actually calculate the subsequent shock profiles as  

functions of t ime. The formulations of the shock profiles in the present 

study a r e  based on a shock dynamic theory (Refs. 10 and 11) in fluid 

mechanics.  The two-dimensional method of character is t ics  is  employed 

to calculate the successive positions of shock waves a s  a function of 

time. The equations of s ta te  for  metals  a r e  used in the formulation, and 

the shock interaction with the f r ee  boundary i s  a l so  considered. 

The major  shortcoming of this theoretical model is that it yields 

no information on the properties f a r  behind the shock wave except imme - 

diately a t  the shock a s  deduced from Hugoniot relations. Because the 

shock wave develops in a hemispherical shape in a short  period after 

impact,  quasi-s imilar  solutions of blast wave theory (Ref. 12)  a r e  used 

to approximate the fluid functions in the region behind the shock wave. 



The object of this study is  to calculate the shock profiles resul t -  

ing f rom hypervelocity impact and to use these resul ts  in predicting the 

impact phenomena such a s  c ra t e r  formation and spallation fractures .  

The applications of shock propagations in solid medium will be reported 

la te r .  

A numerical example i s  given in this report  and compared with 

the existing resul ts  of other investigations. The agreement in general 

i s  good. 

The author wishes to  express  his appreciation to Mr. Car l  Young 

for his discussions of the problem; and Dr .  G. R. Guinn for his guidance 

and e ncouragernent during the course of this work. 



THEORETI CAL MODEL OF I M PACT-GENERATED SHOCK 
PROPAGATION I N  SOLID MEDIA 

The phys ical features  of hyper velocity impact can be illustrated 

schematically in Figure 1, in which a cylindrical projectile traveling a t  

a high velocity is  assumed to s t r ike a semi-infinite target. Immediately 

af ter  the impact (Figure l a )  there a r e  two strong shock waves moving 

in opposite directions: one traveling forward into the target  and the 

other  backward into the projectile. The p res su res  generated by the im-  

pact a r e  s o  high in the mater ia l  through which the shock has passed 

that the mater ia l  strength i s  comparatively negligible. Therefore the 

ma te r i a l  behind the shock wave is  considered to behave essentially a s  

an  inviscid, compressible fluid. As the shock wave advanced further 

into the target  mater ia l ,  the plane portion of the shock wave i s  gradually 

"consumed" by the rarefaction waves f rom the corners  (see Figure lb) . 
The shock front becomes distorted and attenuated in strength,  and even- 

tually approaches the shape of a hemisphere. After an extended elapsed 

period of t ime af ter  impact, the c r a t e r  is  formed in the target  (Figure l c  ). 

Fur the r  advancement into the semi-infinite ta rge t  will cause the shock 

wave to degenerate into the plastic waves and then into the elastic wave. 

The geometric development of the impact shock, in an idealized 

sense ,  resembles  a moving shock in unsteady, supersonic flow. Figure 

2 i l lustrates  a normal shock moving along a channel whose wall is sud- 

denly enlarged and, a s  a resu l t  of the enlargement,  the shock wave 

changes i ts  shape a s  it propagates into the enlarged a r e a  with subse - 
quent diminishing of the plane shock by the rarefaction wave issuing 

f r o m  the corner  of the wall. The mathematical formulatioll of this prob- 

lem will be given in the next two sections. 
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FIGURE 1. GENERAL FEATURES OF THE HYPERVELOCITY IMPACT MECHANISM 



SUCCESSIVE POSIT IONS OF 
SHOCK WAVE 

FIGURE 2.  MOVING SHOCK FRONT I N  A SUDDENLY ENLARGED CHANNEL 



Figure l a  a l so  i l lus t ra tes  the manner  in which the mater ia l  

par t ic les  a r e  splashed upward f rom the f r ee  boundary of the ta rge t ,  

and the shock wave 's  interaction with the ta rge t  surface.  The in t e r -  

action between shock waves and the f ree  surface should be considered 

a s  the boundary condition in the calculation of shock profiles a s  will 

be descr ibed la te r .  



FORMULATION OF THE CHARACTER l S T l  C EQUATIONS 

The mathematical  formulation of the shock profile relationships 

a.re based on a shock dynamics theory suggested by Whitham (Ref. 13) 

for plane shock with a corner .  In the present study, the two-dimensional 

computational scheme is  essentially the same as  that of Skews (Ref. lo ) ,  

while the formulation of axisymmetr ic  case  follows a recent paper of 

Hayes (Ref. 11). It should be noted that the formulations of this section 

only apply to a region away f rom the f r e e  surface of the target. In the 

neighborhood of the f r ee  surface,  shock waves and free surface in te r -  

action a r e  considered separately in a subsequent section. 

T W O  -DIMENSIONAL CASE 

In Figure 3,  an orthogonal coordinate sys tem (P , t) i s  constructed 

to  descr ibe the motion of shock waves, where t corresponds to the suc-  

cessive instants of shock wave history and P i s  called "ray" to descr ibe 

a specific portion of the shock wave. A basic assumption i s  that each  

s m a l l  portion of the shock, which is  bounded by a "ray-tube", m a y  be 

t reated independently a s  one -dimensional flow and obeys the shock 

propagation law. The shock propagation law is  a relation between the 

r a y  tube a r e a  A and the shock velocity U: 

which will  be derived in a la te r  section. 

In the physical plane (Figure 4). the a r c  lengths P-Q and a r e  

defined a s  

m = ~ d t  



FIGURE 3. "RAY TUBE" COORDINATE SYSTEM 

FIGURE 4. GEOMETRIC RELATION OF EQUATIONS 2 AND 3 FOR TWO- 
DIMENSIONAL CASE 

POSIT IONS ; 

RAY TUBE 



Let 0 (P , t )  be the angle between the r ay  and a fixed direction. 

Then the change o-C 8 f rom P to S i s  

Similarly,  

Notice that the derivations above a r e  obtained f rom purely geo- 

me t r i ca l  reasoning. A combination of Equations 2 and 3 indicates the 

kinematic relation between U and A: 

a 1 au a r , =  - = O  , 
~ ( u  a t )  + ap.(A ap ) 

When Equation 1 i s  combined with Equation 4, the shock positions 

a r e  determined for  a l l  times. The kinematic relations may be written 

in t e r m s  of U a s  follows: 



or equivalently, 

w h e r e  A1(U)  = 
dA ( U )  
dU 

The above equations a r e  analogous to the equations of non- 

l inear sound waves o r  two-dimensional steady supersonic flows; 

hence the existing theories of compressible fluid flows on these topics 

can be equivalently applied to the present problems. 

By the theory of charac ter i s t ics ,  Equations 5 and 6 yield 

where C i s  the equivalent "sound speed": 

Let P +, 1. be the Riemann invariants of character is t ics  C+ 

and C- ,  respectively. Then Equation 8 gives 

dP 
C + .  O + w ( U )  = I+ on- d t 

= t c  

and 



Let m(cu, p) be the angle between a characteristic and a ray (see 

Figure 5). The characteristic lines have the direction 

* = tan (8 +m) 
dx 

on the physical plane. The positive sign in Equation 1 3  corresponds to 

left-running characteristics and the negative sign to right-running charac- 

ter is t ics ;  m i s  equivalent to the "Mach angle" in two-dimensional steady 

flows. 

Figure 6 shows that the increment P R  along a left-running 

characteristic can be related to dt and do in the (P, t) plane b y  

dx = U dt cos (8 + m)/(cos m) 

d y  = U dt sin (8 + m)/(cos m) 

and 

dx = A dp cos (8 + m)/(sin m) 

d y  = A dp sin (8 + m)/(s in  m) 

A . 3  -AC tan m = - 
U dt - U 

Similar relations can be found for right- running character is tics 

by simply changing 8 + m to 8 - m in Equation 14, 

Figure 7 shows that a plane shock, starting at the edge of a solid 

medium enters a sudden enlargement a rea  at time t = 0. For  t > 0, there 

a r e  two central fans emitted f rom the "corners", which cause the shock 



SHOCK 

FIGURE 5. "MACH ANGLE" I N  PHYSICAL PLANE 

LEFT-RUNNING CHARACTERISTICS 

1 dTy 
P - 
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FIGURE 6. RELATION OF (x,  y)  PLANE AND (6, t) PLANE 



NOTES: 1.  tc i s  t he  t ime  when t h e  f i r s t  c h a r a c t e r i s t i c  
reaches t he  shock c e n t e r l i n e  ( x - a x i s ) .  

2. The normal shock p o r t i o n  vanishes comple te ly  
f o r  t t,. - 

F I G U R E  7. SKETCH OF SHOCK PROPAGATION'  I N  S O L I D  MEDIUM 



front to expand. The normal  shock portion is therefore diminishing i n  

the course of time. Before the t ime tc (defined i n  Figure 7) ,  the physical 

picture  i s  a simple wave pattern.  Therefore U, 8, m a r e  invariants 

along a chat-acteristic line, Direct  integration of Equation 14 yields 

x / t  = U cos (9 + m.) / cos m + xo/ t  

y / t  = U s in  (8 + m )  / cos m + yo/ t  

x / p  = A cos (9 + m )  / s in  m + x o / ~  

y /p  = A s in  (9 + m) / cos ~ + Y o / ~ Y  

where (xo, yo) i s  the init ial  point. Similarly, changing m to - m  in 

Equation 16 gives the integrated equation for  right- running charac ter i s t ics .  

When t > tc, the s imple wave theory ceases  to apply and the shock 

profiles can he predicted cnly b y  constructing thc charzc ter i s t ic  nets, 

in the s a m e  manner  a s  a two-dimensional nozzle flow field. 

The s imple wave solution of two-dimensional cases  i s  only 

hypothetical, since the shock waves generated by the projecti le of finite 

dimensions a r e  three-dimensional. The axisymmetr ic  c a s e  i s  the 

s implest  three-dimensional flow configuration. 

I n  the next subsection, s imi lar  treatment will be given for axi- 

symmet r i c  impact problems. A finite difference numerical  scheme 

is adopted because of the nonexistence of simple wave solutions. To do 

so, a s tar t ing line should be chosen to construct the net of charac ter i s t ic  

l ines .  * The solutions on the s tar t ing line a r e  the simple wave solutions 

descr ibed in this  subsection. 

*In steady, ax isymmetr ic  supersonic  flow calculations a t  the exit  of a 
nozzle, the Prandtl-  Meyer expansion fan, which i s  a simple wave 
solution, i s  used to provide such a starting line (Ref. 14). 



AXISYMMETRIC CASES 

As  mentioned previously, the character is t ic  equations for  

ax isymmetr ic  shock propagation can be formulated in a s imi lar  way a s  

in two-dimensional case ,  except that the basic coordinate system (P , t )  

must  be redefined. 

T o  construct  the axisymmetr ic  solutions, the basic coordinate 

sys t em (p,  t )  is defined such that the distance along a ray between the 

shock positions given by t and t + dt is U dt, and that A d P / r  i s  the 

distance between the ray  p and p + dp; r i s  the distance f r o m  the ax is  

of symmet ry  and U i s  the shock velocity ( s e e  Figure 8). 

Le t  O ( p ,  t) be the angle between the ray  and the axis of s y ~ n m e t r y .  

The change of 0 f r o m  P to S ( see  Figure 9) i s  

where  the relation ( U  a t ) / a r  = sin 8 i s  used and 0 = 0 a t  the axis of 

symmetry .  

A s imi l a r  t rea tment  fo r  the change of 0 f r o m  P to Q gives 

Let  61 = A 6PIr  be the distance between the rays  P and P f 6P. 

Equations 17 and 18  then become 
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a0 1 aA sin 8 - - - - 
a a  A u a t  

t- = 0 
r 

and 

Assume that the shock propagation law, i. e . ,  the shock speed 

and a r e a  relation, i s  expressed in the form (see  page 41) 

where 

Equation 19, then, can be rewritten a s  

Applying the theory of character is t ics  in Equations 20 and 21 

yie Id s 

s in  8 
U d t  = 0 

along. 

where i s  the compatibility equation of the physical charac ter i s t ics  C*. 



F o r  a given initial shock shape, the shock shape a t  la te r  t ime 

can be obtained by constructing a finite difference net in the same 

manner  a s  that of a steady supersonic  jet downstream of the nozzle exit 

section. 

Two boundary conditions must  be imposed. One is  simply that 

The other co~ldi t ion i s  on the f r e e  boundary where the shock wave inter- 

a c t s  the f r e e  boundary. The interaction will be described in a l a t e r  

section. 



HUGONIOT RELATIONS OF SHOCK WAVES I N  SOLID  M E D I A  

When a shock wave moves  in to  a s ta t ionary  medium,  the  flow 

v a r i a b l e s  a c r o s s  a shock a r e  governed by the following laws:  

@ Conservat ion of m a s s  

Po u = p (U - u )  

0 Conservat ion of momentum 

p -  p? = p o u u  

0 Conserva t ion  of ene rgy  

w h e r e  U, u ,  p, p ,  and e a r e  the shock velocity, fluid velocity, densi ty ,  

p r e s s u r e ,  and the specific in te rna l  energy  of the f luid,  respect ively .  

Subsc r ip t  o r e f e r s  to the undis turbed ( o r  s ta t ionary)  region.  

One m o r e  re la t ion i s  needed to solve the flow a c r o s s  a shock ,  

i. e .  , the s t a t e  equation of the m a t e r i a l  

Recent ly ,  many  s tud ies  have been conducted (Refs.  15 ,  16, and 17 )  on 

the s t a t e  equation of sol id  m a t e r i a l .  So f a r ,  no s imple  and gene ra l  

equat ion h a s  been formulated.  F o r  the sake  of convenience,  a n  equation,  

which r e l a t e s  the  shock velocity and the par t i c le  velocity u, i s  used  i n  

th i s  work .  In gene ra l ,  t h e r e  a r e  two f o r m s :  one appl ies  to  s o  ca l led  

c, s mater ia l" ;  the other  appl ies  to aluminum. 

c , s MATERIALS 

In Reference  16, McQueen, e t  a l ,  use  a l inear  equation 

u = c t s u  (2  8 



which r e l a t e s  the velocit ies U ,  u f o r  mos t  meta l s .  c is the dilatational 

wave speed and s i s  a constant  which i s  tabulated f o r  16 ma te r i a l s  i n  

t he i r  pape r .  The ma te r i a l s  which obey Equation 28 a r e  c lass i f ied a s  

I1c, s mater ia ls" ,  

Substituting Equation 28 into Equations 24, 25, and 26, the 

flow var iables  a r e  obtained: 

s u 
= ( s -  1 ) U t c  Po a 

and 

The s lopes  of the Rankine-Hugoniot curve ,  c ~ - ~ ,  in the (P, p 

plane i s  given by 

where  Ms = U / C  i s  the shock Mach number.  C C - H  differs  slightly 

f r o m  the adiabatic sound speed a s  M, nea r s  1 ,  but appreciable 

d i sc repancy  i s  found for  l a rge  shock Mach numbers .  

The adiabatic sound speed,  a = ( a p /  a p )  s ,  should be der ived 

by a n  isentropic  p roces s  which r equ i r e s  the explicit f o rm of the s t a t e  

equation, Equation 27. But for  c , s ma te r i a l ,  the adiabatic sound 



s p e e d ,  a, can  be obtained approximately i n  t e r m s  of the mater ia l  

constants c and s. The resul tant  expression is 

A detailed derivation is given i n  the Appendix, and a comparison 

of a and c R - -  is made in Figure 10. 

It is of in te res t  to point out that the c ,  s mater ia l  is very  

s imi lar  to a perfect gas. The range of s var ies  f rom 1 . 2  to 1.9 for  

most  meta ls ,  which is analogous to the specific heat ra t io  of gases .  

But. it should be s t r e s s e d  that the c ,  s relation i s  only an empir ical  

equation. Its accuracy is highly questionable when the shock pres - 

s u r e  is g rea te r  than 2 megabars .  

ALUMINUM 

Aluminum is one of the exceptional meta ls  which do not follow 

the l inea r  shock relat ion of Equation 28. Instead, the shock relation 

fo r  aluminum is expressed  in  a quadratic fo rm a s  

In addition, the adiabatic sound speed a is a l so  a quadratic 

function of u: 

F o r  simplicity,  the coefficients ai and bi  used in this study a r e  

obtained by fitting them into the table of Chou e t  a1 (Ref. 18) (see 

Table 1). 





TABLE 1. COEFFICIENTS OF EQUATIONS 34 AND 35 

Chou's table was established by using the Tillotsen equation 

(Ref .  14) (for p > 1 mb) and the experimental data of the Los .Alamos 

Laboratory (Ref. 16) (for p 5 1 mb). 

Again, Equation 34, combining Equations 24, 25, and 26, 

provides the shock relations needed in the next section. 



SHOCK PROPAGATION LAWS 

As mentioned previously, a shock velocity and a r e a  relation 

(Equation 1) o r  shock propagation law is needed for completing the 

charac ter i s t ic  solutions. Equation 1 i s  derived in this section. 

A shock wave moving in a channel with varying c r o s s -  

sectional a r e a  is considered. The shock s trength attenuates i f  the 

channel a r e a  increases  downstream; and conversely,  the shock wave 

would be strengthened if the channel a r e a  converges. This phenom- 

enon is  well-known in blast wave theory. Even if the fluid is  assumed 

fr ic t ionless ,  the shock front velocity decreases  very  quickly and 

approaches the velocity of sound a t  a large distance f rom the source 

of explosion. The enlargement of the shock front  a rea  resul ts  in atten- 

uation of the shock strength,  o r ,  in the equivalent, a reduction of 

shock velocity. The shock propagation law re la tes  the change of the 

shock velocity to the change of the channel a rea .  

The shock propagation law was f i r s t  obtained by Chester 

(Ref. 19)  and Chisnell  (Ref. 2 0 )  f rom a l inearized approximation of 

one-dimensional compress ib le  flows. Their  resu l t s  were  l a t e r  

reder ived  by Whitham (Ref. 21) who applied a simple rule in the non- 

steady, one-dimensional flow theory. Their  r e su l t  i s  sometimes 

called "CCW Approximation". In this section a shock propagation law 

i s  formulated for  solid media.  

Whitman's rule  can  be stated a s  follows: the flow quantities 

along a cha rac te r i s t i c  line m u s t  be equal to  the flow quantities just 

behind the shock wave. With this rule and the Hugoniot relation, a 

differential  re lat ion i s  obtained, which descr ibes  the motion of a 

shock wave down a nonuniform a r e a  channel. In hypervelocity impact  

problems,  a plane shock i s  generated initially a t  the interface between 



the projecti le and the ta rge t ,  and the shock front a r e a  suddenly enlarges 

while it propagates  into the ta rge t .  Then the shoclr propagation l a w  is 

applied under the assuxnption that the whole ilow field i s  composed of a 

number of one-dimensional "rays" (see page S ), each one of which 

independently obeys this law. 

F o r  one-dimensional, unsteady flow i n  a variable a rea  channel, 

the governing equations of the fluid flow may be written in  the following 

fo rm:  

and 

2 - au + - .  au t u -  a b = o  , 
at ax P ax 

Applying the theory of charac ter i s t ics  to  Equations 36 and 37 

yields 

on the charac ter i s t ics  

c*, 

where  r; denotes hodographic charac ter i s t ics  and C; denotes physical 

cha rac te r i s t i c s .  



To apply Whitham's rule,  the ilow quantities on the outgoing 

cha rac te r i s t i c s  C; a r e  matched with the flow quantities behind the 

shock wave. The appropriate  branch in  Equation 39 i s  

The t e r m s  p, a, and u a r e  functions of shock velocity U and 

the ma te r i a l  charac ter i s t ics .  Equation 40 can  thus be integrated and 

the integrated equation represents  the shock propagation law. 

For  c, s mater ia l ,  Equation 40 becomes 

where  Ms = U/c and 

- I -  1 

{ [ ( S  - 1) Mp + 11 [ ( 3 8  - 1)  Ms - (2s  - 1)1 IZ  

For  the case  of strong shock, Ms - U / C  + m , Equation 42  

reduces to 



F o r  a luminum,  the  function p2 i n  Equation 41 i s  

w h e r e  a and u a r e  functions of U, a s  shown i n  Equations 34 and 35 of 

the  previous  sect ion.  

Integration of Equation 40 yields 

A ( U ) =  K exp (-.I p2 +) 
which is Equation 1 on page 8 . k' is  an integration constant, 

Notice tha t  the  integration i n  Equation 45 can  be c a r r i e d  out 

explici t ly through a tedious p rocedure .  But in actual  computations,  

only the function p i s  used.  The computational  p rocedures  wil l  be 

d i s cus sed  i n  a l a t e r  sect ion.  



SHOCK WAVE l NTERACTlON W l T H  FREE BOUNDARY 

As stated previously, information about shock-free surface 

interaction i s  required to specify one of the boundary conditions in 

constructing the character is t ic  solutions. Figure l l a  shows an expan- 

sion fan behind the shock, through which the pressure  drops from the 

value immediately behind the shock wave to ze ro  a t  the ta i l  of the fan. 

The physical picture is  analogous to P r  andtl- Meyer expansion around a 

convex corner  except that the expansion fan i s  three-dimensional and 

unsteady i n  nature. The shock front would attenuate and is distorted 

by the rarefact ion waves. 

A simplif ied model has  been proposed by Russian scient is ts  

(Ref. 22)  to es t imate  the shock inclination. Recently, Rae (Ref. 7) 

applied it to the impact-generated shock propagation, but he chose 

ideal  gases  in  tile forrrlulation. in  the present  study, Rae ' s  formula.- 

tion is general ized to solid media.  

F r o m  Figure  l l b ,  i f  the shock inclination P i s  g rea te r  than a 

ce r t a in  value P*, called the "cr i t ica l  angle", the rarefact ion waves 

cannot reach  the shock front. Therefore,  i f  the original shock inclina- 

tion p > P*, the shock motion along the f r e e  surface will not be affected 

by the f r e e  sur face  interaction. Conversely, if  P > P*, P will change 

continuously and eventually approaches P::. The shock will remain  

undistorted af te rward .  

The transit ion phenomenon (P+P *) is  ra ther  complex in mathe-  

matical  analysis ,  because an unsteady and three -dimensional flow prob- 

lem i s  involved. In this work, i t  is  assumed that the transition period 

is s o  shor t  in the development of shock profiles that it can be neglected. 

Then P = P :r: will provide the boundary condition a t  the f ree  surface;  P :I: 

depends on the local shock strength and is derived by Equation 46. 
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FIGURE 11. SHOCK WAVE AND FREE SURFACE INTERACTION 



Refer r ing  to F igu re  1 lb ,  the cosine law gives 

and 

Equation 46 ind ica tes  the  c r i t i c a l  shock  inclination angle p:::, 
a s  a function of U, u, and a .  Since a and u c a n  be exp re s sed  i n  t e r m s  

of U ;  P::: actual ly  depends on shock  velocity U only. 



CONSTRUCTION OF NUMER I CAL SOLUTIONS FOR 
SHOCK WAVE PRO PAGATIONS 

INITIAL NORMAL SHOCK WAVES 

When a projecti le impacts on a ta rge t  with relative velocity V, 

two normal  shock waves a r e  generated a t  the interface and move i n  

opposite directions with respect  to  the interface (Figure 12a).  The 

normal  shock solutions can be obtained by applying Equations 24,  

26 ,  and 28 or  34.  

F o r  s imi l a r  ma te r i a l  hypervelocity impacts ,  the par t ic le  

velocity equals to  half of the impact  velocity (Figure 12b), 

Equatioll 47 is derived by taking a velocity transformation. If 

the projecti le and the target  move in  opposite directions with the s a m e  

speed V / 2 ,  the fluid particles behind the shock waves should be motion- 

l e s s  a s  a resu l t  of symmetry  with respec t  to the transformed coor -  

dinate sys  tem. 

F o r  nonsimilar  ma te r i a l  impacts ,  a contact discontinuity inter-  

face  exis ts .  But the p r e s s u r e  and velocity functions a r e  assumed 

continuous a c r o s s  the interface;  P3 = P2 and us = u2. F r o m  Equation 

25, 

and 
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FIGURE 12. IMPACT-GENERATED NORMAL SHOCK WAVES 



With the a id  of shock rela t ions ,  Equation 2 8  o r  34, the solu- 

t ions of U1 and Uo a r e  readi ly  found. 

SIMPLE WAVE SOLUTIONS 

As shown i n  F igu re  13, Uo i s  assumed to  be the normal  shock 

velocity calculated i n  Equation 47 o r  Equation 48. Then the "Mach 

angle" mo c a n  be obtained f r o m  Equations 15 and 41, 

rno = tan- '  [p (uo)] , 

and 

Next, a shock velocity Ul i s  chosen such that U1 < Uo , and 

mo is calculated f r o m  Equation 49. The shock angle 81 i s  

The shock posit ion of point 1 i s  determined by 

x1 - 
t 

= Ui cos  (81 + m l  ) / cos  m l  

and 

= UI s i n  (el + m l  )Icos ml 
t 

where  t is the t ime  a f t e r  impact .  

3 4 
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F IGURE 13. CONSTRUCTION OF A SIMPLE WAVE SOLUTION 



Repeating the procedure ,  by choosing a sequence of shock 

veloci t ies  U 2 ,  U 3 ,  . * a  U n l  m i ,  8 i ,  ~ i / t ,  y i / t  ( i  = 2 ,  . n) a r e  

determined in the s ame  manner.  The cotnputations continue until 

x o / t  r 0 .  This completes the construction of a simple wave so1utio:l. 

ASYMPTOTIC SOLUTION O F  T W  0- DIMENSIONAL SHOCK PROFILES 
FOR STRONG SI-IOCK 

An analytic express ion  of shock profiles can  be obtained f o r  

l a r g e  U in s imple  wave solutions. c ,  s m a t e r i a l  i s  chosen in the 

formulat ion that  follows. 

The function p(U) for a c ,  s mate r i a l  in  the shock propagation 

law approaches  a constant a s  U -+ oo (Equation 43), and i s  denoted by 

p,. The re fo re  

and 

The shock wave locus i s  in  the fo rm 

X 
P = e Po0 8 cos  (8 + m,)/cos m, 
Uo t 

and 

where  rn, = tan- '  p, is a constant. 



1 
2 z Letting R = (x2 i- y ) , Equation 53 may  be expressed  in  po la r  

coordinates  a s  

where  

Equation 54 ( see  F igure  14) r ep re sen t s  a logar i thmic s p i r a l  

cu rve ,  and h a s  been der ived by Skew (Ref. 10)  for  an ideal  gas .  How- 

e v e r ,  i t  should be emphasized that  Equation 52 mus t  he used with 

caution s ince the s imple  l inear  shock rela t ion of c ,  s m a t e r i a l  m a y  

not be valid fo r  very  s t rong  shocks.  

FINITE D I F F E R E N C E  SOLUTIONS F O R  THE CHARACTERISTIC 
EQUATIONS 

For  a n  ax isymmetr ic  impact  p roblem,  the s imple  wave solu- 

tion only provides the init ial  condition. Two boundary conditions a r e  

used:  

o 8 = 0 a t  the axis  of s y m m e t r y  

8 = - (/3* + S) on the f r e e  sur face .  

The method of cha rac t e r i s t i c s  i s  applied i n  computing the 

shock prof i les .  To do th i s ,  the cha rac t e r i s t i c  equations, Equations 

22 and 23, a r e  f i r s t  writ ten in finite difference f o r m s ,  and the solutions 

a r e  then constructed by using the numerical  techniques of compressible  

flow theory (Ref. 14). 
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FIGURE 14. APPROXIMATE SHOCK PROFILE FOR THE STRONG SHOCK 
SITUATION ( U  LARGE) 



The finite d i f fe rence  scheme developed he re in  differs  f r o m  the 

conventional method. The p r e s e n t  scheme i s  designed to cons t ruc t  the 

shock prof i les  for  success ive  t ime  intervals .  Instead of using two 

known field points to obtain the th i rd  new point, only one point and the 

t ime  in te rva l  At a r e  chosen to determine a new point. The advantage 

i n  this  numer ica l  scheme is that  the successive shock prof i les  a s  a 

function of t ime  c a n  be d i rec t ly  computed without interpolations between 

the f ie ld  points. The resu l tan t  finite difference equations a r e  

programmed on the IBM 1130 digital computer and resu l t s  will 

be presented in a l a t e r  section. 



A N  APPROXIMATION FOR PRESSURE PULSE AT 
LATE STAGE OF IMPACT 

The shortcoming on the present shock propagation model i s  

that no information i s  given the flow variables behind the shock 

wave. The flow field of a diffracting shock wave i s  too complicated 

to be obtained analytically. Probably this i s  the reason for the 

development of direct  numerical programs,  such a s  PIC code and 

Eulerean Code, since the flow variables a r e  significant in the 

descr ipt ion of the impact mechanism. 

At the late stage of shock propagation, it i s  found that the shock 

front develops rapidly into a sphere- like shape, and the flow var iab les  

va ry  gradually around the shock front. These facts suggest that it is pos- 

sible to obtain an approximation for the flow field a t  the large elapsed time. 

To find the approximate solutions in the flow field, the equaticjns 

f o r  three-dimensional,  unsteady flow with symmetr ic  axis a r e  wr i t ten  

i n  a spher ica l  coordinate system. These equations a r e  



where u r  and up represent  the velocity components in the r and p d i r e c -  

t ions, respectively (Figure 15). 

Expanding the variable u,, ug, p, and p i n  Fourier  se r i e s  yields 

03 

ug ( r ,  g t )  = v n ( r ,  t )  sin n 9 ,  etc. 
n=l  

By substituting Equation 56 in Equation 55, the zeroth o r d e r  

equations a r e  obtained: 

In the above sys tem of equations, u = ur  and the subscript "0" i s  dropped. 

Equation 57 i s  identified a s  a one-dimensional, unsteady flow 

equation system. A t ransformation of the dependent and independent 

variables  i s  introduced a s  



FIGURE 15. SPHERICAL COORDINATE SYSTEM WITH SYMMETRIC A X I S  



u = U f ,  

and 

where  R i s  the shock front position. The f i r s t  two equations of Equa- 

tion 57 become 

Note that f ,  g, and h a r e  functions of two variables;  5 and R(t). 

Solution of the above sys tem of equations is s t i l l  a very difficult task. 

In general ,  the s imilar i ty  solutions do not exist  because the assumptiorl 

of s t rong condition may not be justified. In fact, when the impact- 

generated shock wave becomes a spherical shape, the shock strength 

is usually weak. 



Now, two assumptions a r e  imposed: 

where  f l ,  h l  a r e  the functions evaluated a t  the shock front (5, = 1) and 

they a r e  t ime- dependent functions. 

The f i r s t  assumption is  made because the numerical solutions of 

other studies (Refs. 8 and 23) show that the velocity functions a r e  nearly 

linear::, while the second assumption is based on a quasi-similarity theory 

by Oshima (see  Ref. 12.). 

F r o m  Equations 59 and 60, combined with the assumptions above, 

g and h a r e  readily obtained: 

- N 

where  gl = g (1, t )  and A,  m a r e  functions of f l ,  g l ,  h l ,  and X .  

In t e r m s  of physical quantities, the solutions a r e  

*The f i r s t  assumption was a l so  made by Rayzer (Ref. 2 4 )  and Sakura 
(Ref. 12) .  



where 

and 

The subscript  1 denotes the ITllgoniot flow quanitites. 



NUMERl CAL RESULTS AND DISCUSS ION 

In this section, some numerical resul ts  a r e  presented. Based 

on these r e su l t s ,  discussions a r e  given on the theoretical model pro- 

posed in this study. Since some of the assumptions imposed in this m 

model  a r e  subjected to question, i t  i s  necessary to compare the pres  - 

ent resul ts  carefully with numerical data available f rom other studies. 

Because of the complexity inherent in this problem, the justification 

of some assumptions can be achieved only through such a comparison. 

THE STARTING POINT O F  SHOCI< CURVATURE 

In  Whitham's rule ,  the effect of disturbances behind the shock 

wave i s  ignored. The justification of this model is difficult to establish 

because the information on the ilow field behirid thc shock wave is s t i l l  

meager .  

Point A in F igure  16a represents  the location where the shock 

curva ture  s t a r t s .  By the CCW approximation, the following i s  obtained: 

tan mo = p(Uo ) . 

But mo can  a lso  be predicted by an  al ternat ive equation: 

Equation 6 3  was derived by Skew (Ref. 25 ) and also by Heyda 

(Ref. 2 6 )  to indicate the point a t  which the normal  shock wave i s  f i r s t  

reached by the rarefact ion wave from a turning co rne r .  It must  be 

pointed out that Equatioll 6 3  i s  o ~ l y  a n  approximation because the 
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FIGURE 16. THE START ING P O I N T  OF SHOCK CURVATURE I N  ALUMINUM 



velocity u and sound velocity a depend on the locations behind 

the shock wave. 

A comparison of the above two approximations i s  shown in  

F igure  16b. F o r  high impact  velocities,  the discrepancy between 

these  two predictions i s  smal l ,  but la rge  discrepancy exists in  the 

low velocity region. Skew (Ref. 2 3  ) performed an  experiment for  

shock waves diffracting around a corner .  Observation of the shock 

shape favors  the prediction of Equation 63. This may imply that the 

this i s  not a definite conclusion since the impact-generated shock 

waves in solids m a y  be different f rom the compressible flow waves 

in Skew's experiment. 

THE SUCCESSIVE POSITIONS OF SHOCK PROFILES 

A numerical  example of aluminum impact on aluminum a t  a 

velocity of 20 k m l s e c  is presented in Figure 17 that the positions 

of shock profi les  a r e  functions of successive t ime s teps.  The normal  

shock portion vanishes very rapidly and i t  completely disappears a t  

about 5. 5 microseconds .  The shock profile develops fur ther  into an  

ellipsoid and eventually approaches a hemispherical  shape. 

The appearance of hemispherical  shock shape inspi res  the 

assumption of spher ica l  symmet ry  made by many investigators (see 

(Ref. 7 ). This assumption is  justified only if, after a long period 

of t ime,  the shock s trength has  attenuated considerably and degener- 

a ted into the speed of sound. Soon af te r  impact,  the shock shape i s  

f a r  f rom spher ica l  and the flow properties vary along the shock front. 

The p res su re  distribution, for  instance, has the highest value a t  the 

symmetr ic  axis and decreases  in value toward the target  f ree  surface.  



FIGURE 17, SUCCESS1 VE SHOCK PROFILES FOR ALUMINUM-ON-ALUMINUM IMPACT 
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PRESSURE DISTRIBUTIONS 

A comparison i s  made with the numerical resul ts  obtained by 

Heyda and Riney (Ref. 27) concerning the peak pressure  along the 

axis of cylindrical symmetry.  Figure 18 shows that for (z /d)  < 1 

the pressure  is  equal to Hugoniot p res su re  obtained by the normal  

shock relation since the plane shock generated a t  the interface has  

not been affected by the rarefaction waves f rom the corner .  The 

p res su re  then decreases  drast ical ly  a s  the shock wave advances into 

the target.  The discrepancy of these two resul ts  a t  the ea r ly  stage 

is  mainly caused by the "numerical diffusion" effect inherent i n  the 

d i rec t  numerical scheme. E r r o r s  of about 30 percent occur compared 

with the exact solutions. However, the agreement  in general  is  good 

except the late stage in which the present solution i s  consistently 

higher than the d i rec t  numerical solutions. This i s  believed to occur 

when the rarefaction waves reflected f rom the r e a r  surface of the 

projecti le a r e  not considered. Such rarefaction waves a r e  known to 

attenuate the target  shock s trength (Ref. 18). 

The angular distributions of shock pressure  a r e  shown in 

Figure 19 s o  that the pressure  gradients in 4 -direction a r e  indeed 

s m a l l  for  large elapsed time. This phenomenon provides the basis  

of formulating the quasi-s imilar i ty  solutions in the previous section. 
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SUMMARY 

A theoret ical  model based on shock diffraction and blast  

wave theories is  developed to describe the propagation of impact- 

generated shock waves i n  solid mater ials .  The successive positions 

of two-dimensional and axisymmetr ic  shock profiles a r e  obtained 

by using the method of character is t ics .  The present analytical 

model,  which differs f rom the usual numerical approaches,  such a s  

PIC and OIL codes,  can eliminate the unrealist ic ce l l  p ressure  

fluctuations caused by numerical diffusion. 

Limited comparisons with the existing numerical resul ts  

a r e  sat isfactory although not conclusive. More comparisons,  

especially low impact velocity ranges,  a r e  necessary to reach  a 

definite conclusion. 

The rarefaction wave reflected f rom the back surface of the 

projectile i s  ignored in the present  study. It is  anticipated that such 

rarefaction wave can a l te r  the strength and the shape of the target  

shock. Moreover,  the flow variables  in the shock region a r e  also 

affected by such rarefaction waves. Fur ther  investigations on the 

rarefaction effects in the target  a r e  recommended. 



APPENDIX. SOUND SPEED OF c, s MATERIAL 
BEHIND THE SHOCK 

The W e -  Griineisen equation of state i s  

where  the subscript  o denotes the initial state and r ( p ) ,  the GrGneisen 

rat io ,  i s  a function only of density. Differentiating Equation A- 1 with 

respec t  to  e a t  constant p, the following expression fo r  r ( p )  in t e r m s  of 

thermodynamic quantitie s i s  obtained : 

According t c  Refercncc 7 ,  = 2 s - 1 a t  norma! density, o r  

p r e s s u r e  p = 0 .  But f o r  higher  pressure ,  a constant value of r was 

proposed by Rae (Ref. 7) , who matched the Mie- Griineisen equation of 

s ta te  with the Rankine-Hugoniot Relation of c., s mater ia l  a t  very high 

shock strength.  I t  i s  

It should be pointed out h e r e  that the range of validity of this expression 

of P is  uncertain since the re  i s  no way to justify i t  by means of the avail- 

able experimental  data of meta ls .  In spite of this,  Equation A- 3 i s  used 

in this  work f o r  the sake of convenience. 

Now, a thermodynamic relation can be derived to yield the 

adiabatic sound speed as  a function of delatational wave speed c and the 

m a t e r i a l  parameter  s .  The derivation presented here is based on 

Reference 28. To do this,  the Rankine-Hugoniot equation i s  differen- 

tiated f i r s t  a s  follows. 

5 4 



Combined with the second law of thermodynamics, Equation A- 4 

becomes 

A general expression of the equation of state may be written 

P = P ( P #  S) : 

hence 

- 2 2  d S ,  
d p  = ) (as)  P 

where (e) = a i s  the adiabatic sound speed, and 
S 

Substituting Equation A- 3 into Equation A- 7 yields 

Then Equation A- 6 can be written a s  

d p  = a2 dp f p TT dS . 

5 5 



Eliminating the t e r m  T dS f rom Equations A- 5 and A- 9 gives a 

relation between the adiabatic sound speed, a 2 ,  and the slope of the 

Rankine- Hugoniot curve in (p,  p )  plane, c ZR- H, which i s  

The shock relations of c, s materials  can be expressed as  

follows 

a =  Ms 
PO 1 t ( S -  l)Ms 

and 

where M, = U/c . 



Substituting Equation A- 11 in Equation A - 10 yields 

1. 

a = $ [ ( 3 s  - l ) ( s  - 1 )  M; - (28' - 6 s  + 2)Ms- (2s - I)]' (A- 12) 

and 

a , = [ (3s - 1) MI- (2. - 1) ] ' 
C R- H ( 2 M s - 1 ) .  l + ( s -  l ) M s  

The ra t io  of a1cR-H depends upon s and MS only. 

(A- 13)  
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